• Computational model of spinal cord stimulation

    Zander et al., Journal of Neural Engineering 2020

  • Biophysics of temporal interference stimulation

  • Computational models of dorsal root ganglion stimulation

  • Patient-specific analysis of spinal cord stimulation

    Lempka et al., Neuromodulation 2019

Publications


Visit Dr. Lempka’s Google Scholar Page


Journal Articles

Zander HJ, Kowalski KE, DiMarco AF, Lempka SF. Model-based optimization of spinal cord stimulation for inspiratory muscle activation. Neuromodulation. 2021;[E-pub ahead of print]. https://doi.org/10.1111/ner.13415

Sankarasubramanian V, Chiravuri S, Mirzakhalili E*, Anaya CJ*, Scott JR, Brummett CM, Clauw DJ, Patil PG, Harte SE, Lempka SF. Quantitative sensory testing of spinal cord and dorsal root ganglion stimulation in chronic pain patients. Neuromodulation. 2020;[E-pub ahead of print]. https://doi.org/10.1111/ner.13329 (* these authors contributed equally)

Mirzakhalili E, Barra B, Capogrosso M, Lempka SF. Biophysics of temporal interference stimulation. Cell Systems. 2020;[in press]. https://doi.org/10.1016/j.cels.2020.10.004

Lempka SF, Capogrosso M. Artificial Neural Stimuli in What is the Key Conceptual or Methodological Bottleneck to Controlling Neural Biology? Cell Systems. 2020;10:461-462. https://doi.org/10.1016/j.cels.2020.06.001

Graham RD, Bruns TM, Duan B, Lempka SF. The effect of clinically controllable factors on neural activation during dorsal root ganglion stimulation. Neuromodulation. 2020;[E-pub ahead of print]. https://doi.org/10.1111/ner.13211

Finn KE, Zander HJ, Graham RD, Lempka SF, Weiland JD. A patient-specific computational framework for the Argus II implant. IEEE OJEMB. 2020;[in press]. https://doi.org/10.1109/OJEMB.2020.3001563

Lempka SF. Can patient-specific computer models help in pain clinics using spinal cord stimulation? Bioelectronics in Medicine. 2020;[E-pub ahead of print]. https://doi.org/10.2217/bem-2020-0005

Capogrosso M, Lempka SF. A computational outlook on neurostimulation. Bioelectronic Medicine. 2020;6:1-7. https://doi.org/10.1186/s42234-020-00047-3

Zander HJ, Graham RD, Anaya CJ, Lempka SF. Anatomical and technical factors affecting the neural response to epidural spinal cord stimulation. Journal of Neural Engineering. 2020;[in press]. https://doi.org/10.1088/1741-2552/ab8fc4

Khadka N, Liu Xijie, Zander H, Swami J, Rogers E, Lempka SF, Bikson M. Realistic anatomically detailed open-source spinal cord stimulation (RADO-SCS) model. Journal of Neural Engineering. 2020;1-12. https://doi.org/10.1088/1741-2552/ab8344

Sperry ZJ*, Graham RD*, Peck-Dimit N, Lempka SF^, Bruns TM^. Spatial models of cell distribution in human lumbar dorsal root ganglia. Journal of Comparative Neurology. 2020;528:1644-1659. https://doi.org/10.1002/cne.24848 (* indicates co-first author, ^ indicates co-senior author)

Lempka SF, Zander HJ, Anaya CJ, Wyant A, Ozinga JG, Machado AG. Patient-specific analysis of neural activation during spinal cord stimulation for pain. Neuromodulation. 2020;23:572-581. https://doi.org/10.1111/ner.13037 (Cover article!)

Anaya CJ, Zander HJ, Graham RD, Sankarasubramanian V, Lempka SF. Evoked potentials recorded from the spinal cord during neurostimulation for pain: A computational modeling study. Neuromodulation. 2020;23:64-73. https://doi.org/10.1111/ner.12965

Graham RD, Bruns TM, Duan B, Lempka SF. Dorsal root ganglion stimulation for chronic pain modulates Aβ-fiber activity but not C-fiber activity: A computational modeling study. Clinical Neurophysiology. 2019;130:941-951. https://doi.org/10.1016/j.clinph.2019.02.016

Lempka SF and Patil PG. Innovations in spinal cord stimulation for pain. Current Opinion in Biomedical Engineering. 2018;8:51-60. https://doi.org/10.1016/j.cobme.2018.10.005

Sankarasubramanian V, Harte SE, Chiravuri S, Harris RE, Brummett CM, Patil PG, Clauw DJ, Lempka SF. Objective measures to characterize the physiological effects of spinal cord stimulation in neuropathic pain: a literature review. Neuromodulation. 2019;22:127-148. https://doi.org/10.1111/ner.12804 (Cover article!)

Maling N, Lempka SF, Blumenfeld Z, Bronte-Stewart HM, McIntyre CC. Biophysical basis of subthalamic local field potentials recorded from deep brain stimulation electrodes. J Neurophysiol. 2018 Jul 18;120:1932-1944. https://doi.org/10.1152/jn.00067.2018

Hill M, Rios E, Sudhakar SK, Roossien DH, Caldwell C, Cai D, Ahmed OJ, Lempka SF, Chestek CA. Quantitative simulation of extracellular single unit recording from the surface of cortex. J Neural Eng. 2018 Jun 20;15(5):056007. https://doi.org/10.1088/1741-2552/aacdb8

Lempka SF, Howell B, Gunalan K, Machado AG, McIntyre CC. Characterization of the stimulus waveforms generated by implantable pulse generators for deep brain stimulation. Clin Neurophysiol. 2018 Apr;129(4):731-742.

Ramirez-Zamora A, Giordano JJ, Gunduz A, Brown P, Sanchez JC, Foote KD, Almeida L, Starr PA, Bronte-Stewart HM, Hu W, McIntyre C, Goodman W, Kumsa D, Grill WM, Walker HC, Johnson MD, Vitek JL, Greene D, Rizzuto DS, Song D, Berger TW, Hampson RE, Deadwyler SA, Hochberg LR, Schiff ND, Stypulkowski P, Worrell G, Tiruvadi V, Mayberg HS, Jimenez-Shahed J, Nanda P, Sheth SA, Gross RE, Lempka SF, Li L, Deeb W, Okun MS. Evolving Applications, Technological Challenges and Future Opportunities in Neuromodulation: Proceedings of the Fifth Annual Deep Brain Stimulation Think Tank. Front Neurosci. 2018 Jan 24;11:734.

Gopalakrishnan R, Burgess RC, Malone DA, Lempka SF, Gale JT, Floden DP, Baker KB, Machado AG. Deep Brain Stimulation of the Ventral Striatal Area for Post-stroke Pain Syndrome: A Magnetoencephalography Study. J Neurophysiol. 2018 Jan 31. https://doi.org/10.1152/jn.00830.2017

Gunalan K, Chaturvedi A, Howell B, Duchin Y, Lempka SF, Patriat R, Sapiro G, Harel N, McIntyre CC. Creating and parameterizing patient-specific deep brain stimulation pathway-activation models using the hyperdirect pathway as an example. PLoS One. 2017 Apr 25;12(4):e0176132.

Lempka SF, Malone DA Jr, Hu B, Baker KB, Wyant A, Ozinga JG 4th, Plow EB, Pandya M, Kubu CS, Ford PJ, Machado AG. Randomized clinical trial of deep brain stimulation for poststroke pain. Ann Neurol. 2017 May;81(5):653-663.

Gopalakrishnan R, Burgess RC, Lempka SF, Gale JT, Floden D, Machado AG. Pain anticipatory phenomena in patients with central post-stroke pain: a magnetoencephalography study. J Neurophysiol. 2016 Sep;116(3):1387-95.

Malaga KA, Schroeder KE, Patel PR, Irwin ZT, Thompson DE, Bentley JN, Lempka SF, Chestek CA, Patil PG. Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates. J Neural Eng. 2016 Feb;13(1):016010.

Lempka SF, McIntyre CC, Kilgore KL, Machado A. Computational analysis of kilohertz frequency spinal cord stimulation for chronic pain management. Anesthesiology. 2015 Jun;122(6):1362-76.

Matias CM, Mehanna R, Cooper SE, Amit A, Lempka SF, Silva D, Carlotti CG Jr, Butler RS, Machado AG. Correlation among anatomic landmarks, location of subthalamic deep brain stimulation electrodes, stimulation parameters, and side effects during programming monopolar review. Neurosurgery. 2015 Mar;11 Suppl 2:99-109.

McIntyre CC, Chaturvedi A, Shamir RR, Lempka SF. Engineering the Next Generation of Clinical Deep Brain Stimulation Technology. Brain Stimul. 2015 Jan-Feb;8(1):21-6.

Matias CM, Amit A, Lempka SF, Ozinga JG, Nagel SJ, Lobel DA, Machado A. Long-term outcomes after replacement of percutaneous leads with paddle leads in a retrospective cohort of patients with spinal cord stimulation systems. Neurosurgery. 2014 Oct;75(4):430-6.

Nagel S, Lempka SF, Machado A. Percutaneous Spinal Cord Stimulation for Chronic Pain: Indications and Patient Selection. Neurosurg Clin N Am. 2014 Oct;25(4):723-733.

Moore NZ, Lempka SF, Machado A. Central neuromodulation for refractory pain. Neurosurg Clin N Am. 2014 Jan;25(1):77-83.

Lempka SF, McIntyre CC. Theoretical analysis of the local field potential in deep brain stimulation applications. PLoS ONE. 2013;8(3):e59839.

Lempka SF, Johnson MD, Moffitt MA, Otto KJ, Kipke DR, McIntyre CC. Theoretical analysis of intracortical microelectrode recordings. J Neural Eng. 2011 8:045006.

Lempka SF, Johnson MD, Miocinovic S, Vitek JL, McIntyre CC. Current-controlled deep brain stimulation reduces in vivo voltage fluctuations observed during voltage-controlled stimulation. Clin Neurophysiol. 2010 Dec;121(12)2128-33.

Chaturvedi A, Butson CR, Lempka SF, Cooper SE, McIntyre CC. Patient-specific models of deep brain stimulation: influence of field model complexity on neural activation predictions. Brain Stimul. 2010 Apr;3(2):65-77.

Lempka SF, Miocinovic S, Johnson MD, Vitek JL, McIntyre CC. In vivo impedance spectroscopy of deep brain stimulation electrodes. J Neural Eng. 2009 Aug;6(4):046001.

Miocinovic S, Lempka SF, Russo GS, Maks CB, Butson CR, Sakaie KE, Vitek JL, McIntyre CC. Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation. Exp Neurol. 2009 Mar;216(1):166-176.

Weinberg BD, Blanco E, Lempka SF, Anderson JM, Exner A, Gao J. Combined radiofrequency ablation and doxorubicin-eluting polymer implants for liver cancer treatment. J Biomed Mater Res A. 2007 Apr;81(1):205-13.


Book Chapters

Matias C, Lempka S, Machado A. “Basic principles of deep brain and cortical stimulation.” Neuromodulation in psychiatry. Ed. Clement Hamani, Paul Holtzheimer, Andres M Lozano, Helen Mayberg. Chichester, UK: John Wiley & Sons, Ltd, 2016.

Lempka SF, Machado A. “Deep brain and motor cortex stimulation for face pain.” Interventional head and face pain management: Nerve blocks and beyond. Ed. Samer Narouze. New York: Springer, 2014.

Lempka SF, McIntyre CC. “Resistivity/Conductivity of Extracellular Medium.” Encyclopedia of computational neuroscience. Eds. Dieter Jaeger and Ranu Jung. New York: Springer, 2014.

Lempka SF, Machado A. “Methodologies for the treatment of pain.” Encyclopedia of computational neuroscience. Eds. Dieter Jaeger and Ranu Jung. New York: Springer, 2013.